Qualitätszirkel Nieren- und Dialysen

Kardiologie Potsdam

Cardiovascular Prevention Center @Charité

Herzinsuffizienz

Universitätzmedizin Rostock

Universitätsmedizin Greiswald

Alexianer St. Josephs Potsdam

Dialyse-Pflege-Standard

salt

PICS Ambulanz

Dr.Vetter

Woran erkranken wir in Deutschland?

BG Klinken - Post-COVID-Programm

Herz Check

EMA

Dr. Heart

Herzhose

Lauflabor

IKDT

Online Strafanzeigen

medpoint - Fortbildungskalendar

Was hab ich?

Healthtalk

BKV Info

BKG

KHS BB

KHS BB
.

Kardiologie

Urologie Berlin

bbgk

VEmaH

ProBeweis

jkb

zurück ins leben

CRO

Gewebenetzwerk

Anamnese- und Untersuchungsbogen

Diagnostische Pfade

CIRS Bayern

Gender Medizin

idw

Dank Genetik zu besserer Prävention von Herzerkrankungen

Der Stoffwechsel eines Menschen ist so individuell wie ein Fingerabdruck und damit auch das Risiko, bestimmte Krankheiten zu entwickeln. 

Ein besseres Verständnis der genetischen Einflüsse auf den Stoffwechsel könnte neue Therapieoptionen eröffnen. 

Jetzt haben Forscher*innen des Berlin Institute of Health in der Charité (BIH) und der Queen Mary University London die bisher größte genetische Karte des menschlichen Stoffwechsels erstellt und die Auswirkungen unseres genetischen Codes auf Blutwerte wie Cholesterin und Aminosäuren untersucht. 

Ihre Ergebnisse haben die Forscher*innen in Nature Genetics veröffentlicht.

Unser Blut kann Aufschluss über unsere Gesundheit geben. Die Menge der Moleküle im Blut, die während unseres Stoffwechsels als Zwischen- oder Abbauprodukte entstehen, sogenannte Metaboliten, weist auf akute und zukünftige Krankheiten hin. 

Ein hoher Cholesterinspiegel beispielsweise kann dazu führen, dass sich das Blutfett Cholesterin in den Arterienwänden ablagert. 

Das wiederum verengt die Gefäße und kann das Risiko für einen Schlaganfall oder Herzinfarkt erhöhen.

Wie hoch unser Cholesterinspiegel oder Blutzucker sind, können wir über unseren Lebensstil wesentlich beeinflussen – was wir essen, ob wir rauchen oder wie viel wir uns bewegen. Doch auch ein gesunder Lebensstil kann in seltenen Fällen einen zu hohen Cholesterinspiegel nicht verhindern. Die Frage ist also: Welchen Einfluss hat die genetische Veranlagung auf unsere Blutwerte? Genau das haben jetzt Forscher*innen des Berlin Institute of Health in der Charité (BIH) und der Queen Mary University London (QMUL) untersucht.

Genanalyse durch Zusammenarbeit von Wissenschaft und Industrie

Anhand von Daten einer halben Million Personen aus der UK Biobank untersuchten sie mithilfe des Industriepartners Nightingale Health Plc die Auswirkungen verschiedener Genvarianten auf die Werte von 250 Molekülen im Blut. 

Dazu kombinierten die Forscher*innen die genetischen Daten von Menschen in Großbritannien mit europäischer, asiatischer und afrikanischer Herkunft mit detaillierten Messungen ihres Stoffwechsels. 

„Unsere Arbeit zeigt, wie wichtig Kollaborationen zwischen Wissenschaft und Industrie sind, denn erst Nightingale Health ermöglichte die Messung aller 500.000 Blutproben. 

Dieser Umfang und das Engagement sind erforderlich, um seltene genetische Variationen, die den Unterschieden im menschlichen Stoffwechsel und in der Gesundheit zugrunde liegen, zuverlässig zu identifizieren“, sagt die leitende Autorin der Studie, Claudia Langenberg, Leiterin der Gruppe für Computational Medicine am BIH und Direktorin des PHURI am der Queen Mary University of London. Das Ergebnis ist eine umfangreiche genetische Karte des menschlichen Stoffwechsels. Dabei waren die Effekte von genetischen Variationen bei Frauen und Männern sowie Teilnehmenden verschiedener Herkunft ähnlich und lassen sich daher verallgemeinern.

Dank Genetik zu besserer Prävention von Herzerkrankungen

„Die genetische Kartierung des Stoffwechsels liefert eine wichtige Referenz, um das Krankheitsrisiko aufgrund bestimmter Blutwerte noch besser zu verstehen“, sagt Erstautor Martijn Zoodsma, Postdoktorand am BIH. 

So identifizierten die Forscher*innen etwa ein neues Gen namens VEGFA, das möglicherweise Aspekte der dichteren Form von Cholesterin (HDL) steuert. Dieses Gen könnte ein Ansatzpunkt für die Entwicklung neuer Medikamente sein, die zur Vorbeugung von Herzerkrankungen beitragen. „Die Entwicklung von Medikamenten zur Senkung von erhöhten Blutfettwerten hat schon Millionen Menschen das Leben gerettet, doch noch immer sind koronare Herzerkrankungen als Folge zu hoher Blutfettwerte eine der häufigsten Todesursachen. 

Unsere Erkenntnisse zeigen hoffentlich neue Wege zu besserer Prävention“ ergänzt Maik Pietzner, leitender Autor der Studie und Professor für Health Data Modelling am BIH und PHURI. Auf diesem Weg ist die Studie der Forscher*innen des BIH und der QMUL ein weiterer wichtiger Schritt.

Originalpublikation:
Zoodsma, M. et al. A genetic map of human metabolism across the allele frequency spectrum; Nature Genetics; 03 Oct 2025, doi. 10.1038/s41588-025-02355-3.

Der Gebärmutterhals

Epithelzellen, die den Gebärmutterhals auskleiden, sind nicht nur passive Barrieren. 

Wie eine jetzt veröffentlichte Studie zeigt, verfügen diese Zellen über eine eigene „Immunintelligenz” und können Abwehrmaßnahmen vorbereitet, bevor sich eine Infektion ausbreitet.

Sexuell übertragbare Infektionen gehören zu den weltweit häufigsten Infektionen; mehr als eine Milliarde Menschen sind davon betroffen. Sie tragen zu Unfruchtbarkeit und Komplikationen in der Schwangerschaft bei und erhöhen das Risiko für verschiedene Krebsarten. Eine wesentliche Rolle in diesen Prozessen spielt die Schleimhaut des weiblichen Fortpflanzungstrakts – speziell im Gebärmutterhals. Die Frage, wie dieses Gewebe Krankheitserreger wahrnimmt und möglicherweise abwehrt, ist daher für die globale Gesundheit von entscheidender Bedeutung.

Neue Erkenntnisse über diese Vorgänge hat jetzt internationales Forschungsteam aus Aarhus, Würzburg und Berlin gewonnen. Die Wissenschaftlerinnen und Wissenschaftler konnten zeigen, dass Epithelzellen im Gebärmutterhals selbst die Immunantwort koordinieren. „Sie sind keine passiven Mauern, sondern aktive Wächter der Gewebegesundheit“, sagt Prof. Dr. Cindrilla Chumduri, Studienleiterin und Hauptautorin der jetzt in der Fachzeitschrift Science Advances veröffentlichten Studie.

Ein immunkompetentes Gewebe

Diese Entdeckung verändert nach den Worten des Forschungsteams die Sichtweise auf den Gebärmutterhals: „Er ist nicht nur eine Barriere, sondern ein immunkompetentes Gewebe, das komplexe Abwehrmechanismen koordinieren kann“, so Cindrilla Chumduri. Die neuen Erkenntnisse bieten damit einen neuen Ansatz für die Infektionsbiologie und wirken sich auf eine Reihe von Anwendungen aus, wie beispielsweise:

• Schleimhautimpfstoffe, die auf die Abwehrkräfte des Epithels abzielen
• Therapien zur Stärkung der angeborenen Abwehrkräfte gegen bakterielle und virale sexuell übertragbare Infektionen.

Darüber hinaus liefern sie einen Ansatz für eine bessere Prävention von infektionsbedingten Krebserkrankungen und Unfruchtbarkeit.

Cindrilla Chumduri ist Infektions- und Krebsbiologin und forscht schon seit Langem an den physiologischen Prozessen im Gebärmutterhalsgewebe – zuerst als Arbeitsgruppenleiterin am Max-Planck-Institut für Infektionsbiologie (Berlin) und am Lehrstuhl für Mikrobiologie der Julius-Maximilians-Universität Würzburg (JMU), inzwischen als Professorin am Department of Biological and Chemical Engineering der Aarhus Universität.

„Anatomisch betrachtet ist der Gebärmutterhals ein kompliziertes Gebilde“, sagt die Wissenschaftlerin. Das Bindeglied zwischen Gebärmutterhöhle und Vagina besteht aus dem sogenannten Endozervix, der an die Gebärmutter angrenzt, und dem Ektozervix, der in die Vagina hineinragt. Diese werden von unterschiedlichen Zelltypen ausgekleidet: Während im Endozervix ein säulenförmiges Epithel vorliegt, findet sich im Ektozervix ein mehrschichtiges Plattenepithel.

Zwei Regionen, zwei Verteidigungsstrategien

Für seine jetzt veröffentlichte Studie hat das Forschungsteam auf sogenannte 3D-Organoidmodelle gesetzt. Mit ihrer dreidimensionalen Gewebearchitektur und -zusammensetzung ähneln diese Laborkulturen ihren natürlichen Vorbildern und behalten die funktionellen Eigenschaften des ursprünglichen Gewebes bei.

Durch den Vergleich von Organoiden mit primärem Gebärmutterhalsgewebe mithilfe der Einzelzellauflösung konnte das Team nachweisen, dass diese Modelle die in vivo vorhandenen Epithel-Subtypen und ihre Abwehrprogramme originalgetreu reproduzieren. „Solche Modelle werden zunehmend als Forschungsplattformen anerkannt“, sagt Cindrilla Chumduri. Die Arbeit ihres Labors veranschaulicht, wie Organoid-Systeme neue Erkenntnisse über Infektionen und die Biologie von Krebserkrankungen liefern können.

Mithilfe einer speziellen Technik, der sogenannten Einzelzell-RNA-Sequenzierung, haben Chindrilla und ihr Team erstmals kartiert, wie Tausende einzelner Epithelzellen auf eine Infektion mit Chlamydia trachomatis, dem häufigsten Erreger sexuell übertragbarer Krankheiten, reagieren.

Dabei zeigte sich, dass:

• Plattenepithelzellen der Ektozervix sich auf die Verstärkung der Barriere konzentrieren
• und Zylinderepithelzellen der Endozervix als Immunsignale fungieren und bestimmte Immunantworten sowie antimikrobielle Abwehrmechanismen aktivieren – selbst, wenn sie nicht infiziert sind.

Subtypen mit besonderen Aufgaben

Weiter fand das Team heraus, dass innerhalb jeder Region spezialisierte Epithel-Subtypen unterschiedliche Aufgaben erfüllten. In der Ektozervix konzentrierten sich einige Subtypen auf Regeneration und Reparatur. In der Endozervix waren sogenannte Bystander-Zellen, die nie direkt infiziert waren, am immunaktivsten.

„Die Bystander-Zellen haben uns am meisten überrascht“, sagt Dr. Pon Ganish Prakash, Erstautor der Studie, der die computergestützte Analyse der Einzelzell-Sequenzierungsdaten durchgeführt hat. „Sie wurden zu den dominierenden Verteidigern und verstärkten die Immunsignale ohne direkte Infektion.“

Zelluläre Kommunikation

Das Team entschlüsselte auch, wie Epithel-Subtypen mithilfe chemischer Signale miteinander kommunizieren, und deckte dabei eine verborgene „Kommunikation“ auf, die ein Gleichgewicht zwischen Abwehr und Reparatur herstellt.

„Die Arbeit mit diesen Organoidmodellen ermöglichte es uns, die Infektionsdynamik auf kontrollierte und realistische Weise nachzubilden“, erklärt Dr. Naveen Kumar Nirchal. „Wir konnten beobachten, wie bestimmte Epithel-Subtypen als Knotenpunkte fungieren und Signale senden, die ihre Nachbarn mobilisieren.“

„Unsere Ergebnisse zeigen, dass die Heterogenität des Epithels von entscheidender Bedeutung ist. Jeder Subtyp hat seine eigene Aufgabe beim Schutz des Gebärmutterhalses und bei der Verhinderung der Ausbreitung von Infektionen auf die oberen Fortpflanzungsorgane“, fügt Dr. Rajendra Kumar Gurumurthy, leitender Wissenschaftler, hinzu.

MaAB - Medizin am Abend Berlin Fortbildungen VOR ORT

Prof. Dr. Cindrilla Chumduri, Medical Biotechnology Section, Department of Biological and Chemical Engineering, Aarhus University cindrilla.chumduri@bce.au.dk

Originalpublikation:
Single-cell atlas of cervical organoids uncovers epithelial immune heterogeneity and intercellular crosstalk during Chlamydia infection. Pon Ganish Prakash, Naveen Kumar Nirchal, Stefanie Köster, Christian Wentland, Jayabhuvaneshwari Dhanraj, Rajendra Kumar Gurumurthy, Cindrilla Chumduri. Science Advances, DOI: 10.1126/sciadv.ady1640