Medizin am Abend Berlin - MaAB-Fazit: Auf der Spur von Sars-CoV-2 in Seilbahnen
Wo lauern die grössten Infektionsgefahren?
Wie kann man sich und andere noch besser schützen?
Wissenschaftler in aller Welt arbeiten daran, das Wissen über Covid-19 zu erweitern – auch an der Empa.
Mit Messungen und Simulationen nehmen Forscher nun Gondeln und Seilbahnkabinen in Skigebieten unter die Lupe.
Vergleich der Infektionsrisiken in drei unterschiedlichen Situation bei einem 1%-Anteil an Infizierten in der Bevölkerung: Blau: zwölfminuten Fahrt in einer Seilbahngondel (8 Personen), orange: Abendessen (8 Personen), grün: Büro (2 Personen). Empa
Covid-19 ist schwer einzuschätzen, und komplexe mathematische Modelle, die Infektionsrisiken beziffern, sind letztlich Versuche, sich der Realität anzunähern – auch im Fall von Skigebieten und den vielen Menschen, die sich dort tummeln.
Deshalb begann das Team um Ivan Lunati von der Empa-Abteilung «Multiscale Studies in Building Physics» seine Arbeit just in dieser Wirklichkeit: in Seilbahnkabinen und -gondeln der Bergbahnen Engelberg-Trübsee-Titlis (BET).
Um dort den Faktor «Luftaustausch» zu erkunden, der bei der Verbreitung
der Erreger bekanntlich eine wichtige Rolle spielt, führten die Forscher
Messkampagnen durch.
Sie untersuchten drei Kabinentypen: eine kleinere
Gondel namens Omega 3 mit einem Volumen von gut fünf Kubikmetern für
maximal acht Passagiere und zwei grössere Kabinen mit Raum für 80
beziehungsweise 77 Menschen und einem Volumen von knapp 40
beziehungsweise knapp 50 Kubikmetern.
Luftströme durch die Fenster - live
Wie sich die Luft in diesen Fahrzeugen bewegt, liess das Empa-Team
zunächst mit einem mobilen System erkunden: In Zusammenarbeit mit der
Firma Streamwise wurde mittels Luftdrucksensoren die räumliche
Verteilung der Strömung in Echtzeit erfasst. Aus diesen Daten
berechneten die Forscher dann «Luftaustausch-Raten» für die jeweiligen
Kabinentypen.
In die gleiche Richtung zielten Messungen des CO2-Gehalts, der als gutes
Mass für den Luftaustausch in Innenräumen gilt. Bei Fahrten in der
kleinsten Kabine von der Talstation zur Bergstation in gut 2400 Metern
Höhe erfassten zwei Sensoren – auf Kopf- und Bauchhöhe – die
Konzentration des Gases.
- Die Resultate: Waren beide Schiebefenster an der rechten Gondelseite geschlossen, stieg der Wert bis zum nächsten Halt, an dem die Türen öffneten, nahezu linear an.
- War eines der beiden Fenster geöffnet, fiel der CO2-Anstieg deutlich geringer aus.
Und bei zwei offenen Fenstern stabilisierte sich der Wert rasch um 500 ppm, also «parts per million», nach einem Anfangswert von 400 ppm, was der Aussenluft entspricht.
Die CO2-Messkampagne dauert zwar noch an, doch sie hat bereits die
Resultate der Messungen mit den Luftdrucksensoren bestätigt. Konkret: In
der kleinsten Kabine wurde die Luft 138-mal pro Stunde ausgetauscht, in
der mittleren 180-mal – und in der grössten nur 42-mal. Die Ursachen
sind laut Lunati die aufklappbaren Fenster im Dach der Gondel: «Im
Gegensatz zu den anderen Kabinen ist der Luftstrom durch den Fahrtwind
sehr sensibel», erklärt er. «Dort herrschen kompliziertere
Strömungsverhältnisse, die weniger effizient sind.»
Auf den ersten Blick mag die Zahl von 42 Luftwechseln pro Stunde gering
erscheinen, doch ein Vergleich mit anderen Innenräumen rückt den
Eindruck ein wenig zurecht:
In einem Zugwaggon finden sieben bis 14 Luftwechsel statt; in einem durchschnittlichen Zweier-Büro sogar nur etwa ein Luftwechsel pro Stunde.
In Seilbahnkabinen tragen geöffnete Fenster also klar dazu bei, das Risiko einer hohen Aerosolkonzentration zu verringern.
Doch was ist mit der Emissionsrate an Erregern? Ein kniffliger Punkt, so Lunati, weil manche Eigenschaften von Sars-CoV-2 noch ungeklärt sind. Zudem hängt der Ausstoss bekanntlich auch vom Verhalten eines infizierten Menschen ab. Atmet dieser ruhig, oder ist er vom Skifahren so angestrengt, dass er heftig schnauft? Lacht er, spricht er – und wenn ja, laut oder leise? Gute Daten dazu sind laut Lunati derzeit rar. Noch dazu sei physikalisch nicht vollständig geklärt, wie sich Tröpfchen und Aerosole in einem Raum exakt ausbreiten.
Um der Wirklichkeit so nahe wie möglich zu kommen, haben die
Empa-Forscher die Rechenmodelle, die für die Abschätzung von
Viren-Ausstoss oft benutzt werden, verbessert und entwickelten damit
ihre eigene Abschätzung. Dabei liessen sie auch die Verbreitung des
Virus in der Bevölkerung mit einfliessen – also die Wahrscheinlichkeit,
dass in einer Kabine ein, zwei oder sogar mehr Virusträger anwesend
sind. Ein einfaches Zahlenbeispiel für eine Kabine mit fünf Menschen:
Bei einer Verbreitung des Virus von 0,1 Prozent der Bevölkerung läge die
Wahrscheinlichkeit, dass eine unerkannt infizierte Person anwesend ist,
statistisch bei rund 1:200 – und bei 1:10'000, dass zwei Infizierte
anwesend sind. Im Falle einer grösseren Verbreitung von einem Prozent
der Bevölkerung wäre dieses Risiko entsprechend 1:20 für einen und
1:1'000 für zwei Infizierte.
Dass jede 100. Person infiziert ist, sei als Spitzenwert während einer
Pandemie durchaus realistisch, so Lunati; es entspricht auch den
Resultaten des Massentests in Graubünden. Ein real möglicher Fall, bei
dem 80 Menschen eine vollbesetzte Kabine bevölkern, wäre in diesem Fall
freilich schon heikler:
Dann liegt die Wahrscheinlichkeit, dass eine
Person unerkannt infiziert ist, laut den Empa-Fachleuten bei rund 36
Prozent. Und dass zwei Passagiere infiziert sind bei rund 14 Prozent.
Gäste einladen, Büro oder Seilbahn? Risiken im Vergleich
Mit diesen und anderen Faktoren wie etwa der Zeitspanne, in der Erreger
inaktiv werden, errechneten die Forscher zunächst Infektionsrisiken für
anfällige Personen in der Kabine – und daraus schliesslich ein Risiko
für sämtliche Passagiere.
Wichtigste Parameter sind die Luftaustauschrate, die Anzahl Infizierte pro Luftvolumen und die gesamte Verweildauer.
Die Resultate für eine kleinere Seilbahnkabine (acht Personen, offene Fenster) veranschaulicht ein Vergleich mit anderen Orten:
- Ein Dinner-Event auf 30 Quadratmetern mit acht Menschen, die sich laut unterhalten, wäre massiv riskanter.
- Das Infektionsrisiko einer 12-minütigen Fahrt mit der kleineren Kabine ist zudem deutlich geringer als bei einem 8-stündigen Arbeitstag in einem Zweierbüro mit 20 Quadratmetern Fläche, dessen «Luftfüllung» einmal pro Stunde ersetzt wird.
- Wenn die Fenster also offenbleiben, bedeutet ein Skitag mit einigen Kabinenfahrten ein deutlich geringeres Ansteckungsrisiko als ein Arbeitstag in einem wenig belüfteten Zweierbüro.
Die Abschätzungen der Empa-Forscher sind zunächst für den Fall «ohne
Masken» ausgelegt.
«Wir wollten das reine Infektionsrisiko durch Aufenthalte in Seilbahnkabinen ermitteln», erklärt Lunati.
«Wenn sie richtig getragen werden, reduzieren Masken das Risiko entsprechend ihrer jeweiligen Filterleistung.
Sie schützen vor allem vor der grösseren
Tröpfchen-Übertragung, zum Beispiel durch Sprechen, sehr gut.»
Weniger Passagiere = geringeres Risiko
Welche konkreten Empfehlungen leiten sich aus den neuen Erkenntnissen
ab?
Neben dem naheliegenden Ratschlag «Bitte lüften!» lohnt es sich auch, die Anzahl der Passagiere pro Fahrt zu begrenzen.
«Das wird in Skigebieten ohnehin schon gemacht und ist auf jeden Fall die richtige Strategie», so Lunati.
Für Liftbetreiber dürften solche Informationen in jedem Fall nützlich
sein.
«Die Zusammenarbeit mit der Empa ermöglicht es uns, an
professionelle und unabhängige Messdaten zu kommen», meint jedenfalls
Marketingleiter Urs Egli von den Titlis Bergbahnen. «Wir schätzen die
Kooperation sehr. Und in Anbetracht der aktuellen Lage ist sie noch
wertvoller für uns.»
Husten im Visier der Wissenschaft
In Zukunft wollen die Empa-Forscher ihre Rechenmodelle weiter verfeinern
oder auch ganz neue Ansätze entwickeln, um der Wirklichkeit noch näher
zu kommen. Und zudem die Datengrundlage für den Ausstoss von Viren
verbessern – mit einer «Hust-Maschine», die sie in ihrem Labor
entwickelt haben. Aus zwei Zylindern, vergleichbar mit Lungenflügeln,
gelangt über Schläuche spezielle Druckluft in einen «Kopf»: aufgeheizt
auf Körpertemperatur, angereichert Feuchtigkeit und Tröpfchen, deren
Verbreitung dann zwei Kameras aufzeichnen – geeignet auch für Tests von
künftigen Schutzmasken.
Mit dem Seilbahnkabinenhersteller CWA in Olten, der die Forschung
verfolgt und unterstützt hat, sind bereits Gespräche über eine
Kooperation im Gange. «Das Thema Luftaustausch wurde bislang eher
stiefmütterlich behandelt», sagt Massimo Ratti. Daten wie diejenigen von
der Empa, so der «Chief Technical Officer» von CWA, seien da wirklich
hilfreich – nicht nur in der aktuellen Lage, sondern auch mit Blick auf
künftige Seilbahnen im öffentlichen Nahverkehr.
Dort sind die Ansprüche schliesslich noch höher als in Skigebieten, erklärt der Fachmann:
«Wir wären sehr daran interessiert, bei einem Forschungsprojekt für Kabinen mit noch besserer Luftzirkulation mitzumachen.»
Aerodynamik in der Seilbahn-Kabine: An den Fenstern misst ein Spezialist die Luftströme mit Hilfe von Luftdrucksensoren. Streamwise GmbH
-------------------------------------------
Corona Aerosole in Innenräumen
Einen ersten, einfachen Zusammenhang zwischen Coronaviren in der Luft
und dem Infektionsrisiko in Innenräumen ermittelte das Team von Jing
Wang vom Empa-Labor für «Advanced Analytical Technologies» bereits vor
der Wintersaison 2020/21.
Die Forschenden werteten Daten von COVID-Infektionen wie auch von Ausbrüchen der Coronavirus-Erkrankungen SARS und MERS aus.
Dabei verglichen sie das Risiko einer Corona-Infektion in Innenräumen durch Kontakt mittels Tröpfcheninfektion bzw. durch Virus-haltige Aerosole in der Luft.
Fazit:
Das Infektionsrisiko einer Person - ohne Maske – ist rund 1000-mal höher, wenn sie weniger als einen Meter Abstand zu einem infizierten Menschen hat, als das Risiko, sich über Virus-haltige Aerosole in weiterer Entfernung im Raum anzustecken.
Verkleinert man den Raum auf ein Zehntel der Fläche, steigt das Risiko
einer Infektion allerdings rund um das Zehnfache.
Schlechte Belüftung, längere Aufenthaltsdauer und mehr Infizierte im Raum lassen das Infektionsrisiko zusätzlich ansteigen.
Die «National COVID-19 Science Task Force» hatte Wangs Erkenntnisse zur Rolle von Aerosolen bei der Übertragung von SARS-CoV-2 denn auch in ihre Empfehlungen aufgenommen.
Wang, der zudem eine Professur am Institut für Umweltingenieurwissenschaften der ETH Zürich bekleidet, beschäftigt sich auch mit einem weiteren COVID-spezifischen Forschungsthema:
Mit seinem Team entwickelte er einen optischen Biosensor, der das Coronavirus in der Luft in Echtzeit nachweisen kann.
Dr. Ivan Lunati
Laboratory for Multiscale Studies in Building Physics
Tel. +41 58 765 41 11
Ivan.Lunati@empa.ch
Prof. Dr. Jing Wang (zum Thema Biosensor)
Advanced Analytical Technologies
Tel. +41 58 765 61 15
Jing.Wang@empa.ch
Rainer Klose Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt
Ueberlandstr. 129
8600 Dübendorf
Schweiz
Zürich
Rainer Klose
Telefon: +41 58 765 4733
E-Mail-Adresse: rainer.klose@empa.ch
Keine Kommentare :
Kommentar veröffentlichen