Medizin am Abend Berlin - MaAB-Fazit: Defekter Kaliumkanal sorgt für Chaos im Navigationssystem des Gehirns
Der Kaliumkanal KCNQ3 ist essentiell, damit unser Gehirn präzise räumliche Landkarten erzeugen kann.
Ist der Kanal defekt, hat das messbare Auswirkungen auf das innere Navigationssystem von Mäusen. Die jetzt in Nature Communications publizierten Erkenntnisse eines Forscherteams unter Beteiligung des Leibniz-Forschungsinstituts für Molekulare Pharmakologie (FMP) in Berlin sind auch für die Alzheimer-Forschung relevant.
Kcnq3-Immunofluoreszenz im Hippocampus, zeitliche (weise
Signalspuren) und räumliche (Ortsfelder von Salven, links, und von
einzelnen Aktionspotentialen, rechts) Feuerung einer Pyramidenzelle in
einer Kcnq3-Knock-Out Maus. Modified from Gao et al., 2021
Kalium ist unter anderem unentbehrlich für die Erregbarkeit der Muskel- und Nervenzellen.
- Verschiedene Ionenkanäle sorgen dafür, dass Kaliumionen über Zellmembranen fließen und dadurch elektrische Ströme erzeugen.
Vor 20 Jahren konnte das Team von Prof. Thomas Jentsch vom Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin die Gene für die Kaliumkanalfamilie KCNQ2-5 identifizieren und später zeigen, dass Mutationen an KCNQ2 und KCNQ3 erbliche bedingte Epilepsie beim Menschen verursachen können.
Dank dieser wegweisenden Arbeiten konnten Pharmafirmen zielgenaue Antiepileptika entwickeln.
Nun haben ein Team von Molekularbiologen unter Federführung von Thomas
Jentsch und ein Team von Neurophysiologen, geleitet von Alexey
Ponomarenko (vormals FMP, heute Professor an der
Friedrich-Alexander-Universität Erlangen-Nürnberg) zusammen mit Kollegen
der University of Connecticut und der Universität zu Köln Hinweise
gefunden, dass KCNQ3 möglicherweise auch eine Rolle bei der Alzheimer
Demenz und weiteren kognitiven Störungen spielen könnte.
- Normalerweise werden bestimmte Kaliumströme vom Transmitter Acetylcholin gehemmt, was wichtig für die Erregbarkeit im Kortex und damit entscheidend für Gedächtnis und Aufmerksamkeit ist.
- Diese sogenannte cholinerge Neuromodulation geht bei Alzheimer-Patienten bekanntlich nach und nach verloren.
In der vorliegenden Arbeit untersuchten die Forschenden die Rolle der
KCNQ3-Kanäle speziell bei der Neuromodulation des Navigationssystems des
Gehirns. Die sogenannten Ortsfelder ("place fields"), deren Entdeckung
vor einigen Jahren mit dem Nobelpreis ausgezeichnet wurde, dienen dem
Gehirn als innere Landkarte. „Wir fanden heraus, wie verschiedene
Signale, die von Ortszellen unter der Kontrolle von KCNQ3-Kanälen
erzeugt werden, mit den Gehirnrhythmen interagieren und so präzise
räumliche Karten bilden“, beschreibt Alexey Ponomarenko ein zentrales
Ergebnis der Studie.
Bei Knock-out-Mäusen mit defektem KCNQ3-Kanal, die von Thomas Jentsch’s
Gruppe erzeugt wurden, zeigte sich jedoch ein anderes Bild: Während bei
gesunden Mäusen die Aktivitätsmuster der Ortszellen einer bestimmten
räumlichen und zeitlichen Abfolge unterlagen, lief bei den
Knock-Out-Mäusen die synaptische Übertragung von einzelnen oder mehreren
Signalen gleichzeitig (Salven) mehr oder weniger chaotisch ab. „Salven
haben normalerweise einen bestimmten Rhythmus, wann sie abgefeuert
werden. Bei den Mutanten werden sie jedoch nicht mehr durch den Rhythmus
kontrolliert, sondern zu völlig zufälligen Zeitpunkten bzw. Phasen des
Rhythmus abgefeuert“, erklärt Ponomarenko. „Dadurch werden einzelne
Aktionspotenziale unterdrückt und es kommt zu einem Ungleichgewicht
zwischen verschiedenen Aktivitätsmustern in den Nervenzellen.“
15 Mikrometer dünne Silikon-Elektroden, die im Hippocampus der Nager
implantiert worden waren, lieferten zusammen mit optogenetischen
Untersuchungen die spannenden Einblicke ins Gehirn. Die amerikanischen
Kollegen konnten darüber hinaus zeigen, dass der fehlende KCNQ3-Kanal zu
einer starken Reduktion der Kaliumströme (hier M-Strom) in den
Nervenzellen führte.
„Obwohl die bisher verfügbaren Daten für eine klinische Anwendung nicht
ausreichen, lassen unsere Erkenntnisse vermuten, dass die KCNQ3-Kanäle
ein potenzielles Ziel für die zukünftige Erforschung von Medikamenten
gegen Alzheimer- und anderen Demenzen sein könnten“, betont Prof.
Ponomarenko, „zumindest im frühen Stadium, wo die Ortszellen
wahrscheinlich noch vorhanden sind, aber die cholinerge Neuromodulation
schon nachgelassen hat.“
Weitere Untersuchungen sollen nun folgen, um die Rolle von KCNQ3 im Gehirn noch besser zu verstehen.
Kcnq3-Immunofluoreszenz im Hippocampus, zeitliche (weise
Signalspuren) und räumliche (Ortsfelder von Salven, links, und von
einzelnen Aktionspotentialen, rechts) Feuerung einer Pyramidenzelle in
einer Kcnq3-Knock-Out Maus. Modified from Gao et al., 2021
Silke Oßwald Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)
Robert-Rössle-Str. 10
13125 Berlin
Deutschland
Berlin
Fax: 030 / 94793 - 109
E-Mail-Adresse: osswald@fmp-berlin.de
Prof. Dr. Alexey Ponomarenko
Institut für Physiologie und Pathophysiologie
Friedrich-Alexander-Universität Erlangen-Nürnberg
Tel.: +49 (0)9131 85 29 30 2
alexey.ponomarenko(at)fau.de
www.physiologie1.fau.de/Ponomarenko
Prof. Dr. Dr. Thomas Jentsch
Department Physiology and Pathology of Ion Transport
Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) und Max-Delbrück-Centrum für Molekulare Medizin (MDC)
jentsch(at)fmp-berlin.de
Tel.: +49 (0) 30 94 06 29 61
www.leibniz-fmp.de/jentsch
Originalpublikation:
Xiaojie Gao, Franziska Bender, Heun Soh, Changwan Chen, Mahsa Altafi, Sebastian Schütze, Matthias Heidenreich, Maria Gorbati, Mihaela-Anca Corbu, Marta Carus-Cadavieco, Tatiana Korotkova, Anastasios Tzingounis, Thomas J Jentsch, Alexey Ponomarenko. Place fields of single spikes in hippocampus involve Kcnq3 channel-dependent entrainment of complex spike bursts. Nature Communications, DOI : 10.1038/s41467-021-24805-2
Keine Kommentare :
Kommentar veröffentlichen