Qualitätszirkel Nieren- und Dialysen

Kardiologie Potsdam

Cardiovascular Prevention Center @Charité

Herzinsuffizienz

Universitätzmedizin Rostock

Universitätsmedizin Greiswald

Alexianer St. Josephs Potsdam

Dialyse-Pflege-Standard

salt

PICS Ambulanz

Dr.Vetter

Woran erkranken wir in Deutschland?

BG Klinken - Post-COVID-Programm

Herz Check

EMA

Dr. Heart

Herzhose

Lauflabor

IKDT

Online Strafanzeigen

medpoint - Fortbildungskalendar

Was hab ich?

Healthtalk

BKV Info

BKG

KHS BB

KHS BB
.

Kardiologie

Urologie Berlin

bbgk

VEmaH

ProBeweis

jkb

zurück ins leben

CRO

Gewebenetzwerk

Anamnese- und Untersuchungsbogen

Diagnostische Pfade

CIRS Bayern

Gender Medizin

idw

Zelluläre Überlebens- und Heilungsprozesse

Von Max-Planck-Chemikern entwickelte neuartige Substanz stört die Stressbewältigung der Krebszellen

Krebszellen sind ziemlich clever und auch dreist – sie kapern zelluläre Überlebens- und Heilungsprozesse, um ihr Wachstum anzukurbeln, sich im Körper auszubreiten und ihr eigenes Überleben so zu sichern. 

Die „Unfolded Protein Response“ (UPR), die Zellen vor Stress schützt, ist ein solcher Überlebensmechanismus. 

Einer ihrer wichtigsten Regulatoren, das „inositol-requiring enzyme 1“ (IRE1), ist ein vielversprechendes Ziel für die Entwicklung von Therapien gegen Krebs und eine Vielzahl anderer schwerer Krankheiten. Nun hat ein Forschungsteam am Max-Planck-Institut für molekulare Physiologie in Dortmund unter der Leitung von Forschungsgruppenleiter Peng Wu eine neuartige Substanz entwickelt, die IRE1 durch einen Mechanismus hemmt, der sich von den bereits existierenden Inhibitoren unterscheidet. Dies könnte neue therapeutische Wege für die Behandlung von Krebs und anderen menschlichen Krankheiten eröffnen.

Die Wäsche ist noch nicht gewaschen, das Fahrrad muss repariert werden und die Rechnungen sind auch noch nicht bezahlt. Unerledigte Aufgaben verursachen Stress. 

Das gleiche Prinzip gilt auch für unsere Zellen. 

Wenn zu viele Proteine falsch oder sogar fehlgefaltet sind, können sie ihre Funktionen nicht erfüllen und die Zelle gerät unter Stress. 

Um mit diesem Stress fertig zu werden, haben Zellen die „Unfolded Protein Response“ (UPR) entwickelt. Sobald diese durch Stress im Endoplasmatischen Retikulum (ER) – der proteinproduzierenden Organelle in der Zelle – aktiviert wird, wird eine Kaskade von Schutzmechanismen ausgelöst, um die ordnungsgemäße Proteinfaltung wiederherzustellen. Einer der wichtigsten Antreiber des UPR ist IRE1, ein Protein, das in die ER-Membran eingebettet ist. IRE1 ist an einer Vielzahl von Krankheiten beteiligt, darunter Immun-, Stoffwechsel- und neurodegenerative Erkrankungen sowie Krebs, und ist daher zu einem relevanten therapeutischen Ziel geworden.

Krebszellen leben unter ständigem Stress::

Tumore werden oft als „Wunden, die niemals heilen“ beschrieben. Krebszellen schaffen eine toxische Umgebung, die sauer, nährstoff- und sauerstoffarm ist. Obwohl dies kontraproduktiv erscheint, ist es tatsächlich eine clevere Strategie: Die lebensfeindlichen Bedingungen aktivieren evolutionäre, zelluläre Überlebenswege, die von den Krebszellen gekapert und umfunktioniert werden, um das Tumorwachstum und -überleben zu unterstützen. „Es ist bekannt, dass die Aktivierung des UPR über IRE1 zur Entstehung und zum Fortschreiten der meisten Krebsarten beiträgt, darunter Leukämie, Glioblastom, Myelom, Brust- und Darmkrebs. Eine hohe IRE1-Aktivität ist auch mit einer zunehmend schlechteren Prognose verbunden“, sagt Peng Wu. In den letzten zehn Jahren sind Signalproteine des UPR zu attraktiven Zielen für die Entwicklung neuartiger Krebstherapien geworden, und es steht mittlerweile eine wachsende Auswahl an medikamentenähnlichen Molekülen zur Verfügung. Viele dieser Verbindungen sind jedoch nur beschränkt einsetzbar.

Ein neuer Hemmmechanismus – hier binden, dort hemmen
Die Gruppe um Wu hat nun einen hochwirksamen IRE1-Inhibitor mit einem einzigartigen Hemmmechanismus entwickelt. In einem ersten Schritt entwickelten die Forschenden einen robusten Assay, um die Wirkung potenzieller IRE1-Inhibitoren zu bewerten. Mit diesem Assay durchsuchten sie eine Bibliothek von ca. 10.000 chemisch unterschiedlichen Verbindungen und identifizierten indolbasierte Gerüste als besonders vielversprechende „Treffer“. Eine systematische Strukturoptimierung dieser Substanzen ergab eine Leitverbindung, die anschließend biochemisch, biophysikalisch und hinsichtlich ihrer Wechselwirkung mit IRE1 charakterisiert wurde. Dabei zeigte sich ihr einzigartiger Hemmungsmechanismus: Anstatt eine der beiden katalytischen Stellen von IRE1 (die Kinase- oder die RNAse-Domäne) durch Bindung zu hemmen, bindet die Verbindung an die Kinase-Domäne und unterdrückt durch diese Wechselwirkung allosterisch die RNAse-Aktivität, die die UPR antreibt. Mit anderen Worten: Die Verbindung „bindet hier, hemmt aber dort”.

Neue therapeutische Möglichkeiten
Unser Verständnis der Unfolded Protein Response hat sich in den letzten Jahrzehnten stetig weiterentwickelt, und die ersten medikamentenähnlichen Moleküle, die auf diesen Prozess abzielen, haben sich in präklinischen Krankheitsmodellen als vielversprechend erwiesen. Viele der bestehenden Wirkstoffe leiden jedoch unter einer schlechten Pharmakokinetik und verursachen erhebliche Nebenwirkungen – insbesondere eine hohe Pankreastoxizität. Es wird vermutet, dass bestimmte reaktive Molekülteile in diesen Verbindungen zelluläre Prozesse stören, die nichts mit der IRE1-Aktivität zu tun haben. Darüber hinaus sind einige Hemmmechanismen noch nicht vollständig verstanden.

 „Strukturelle und funktionelle Studien wie die unsere, die den Wirkmechanismus klar aufzeigen, sind von großem Wert und werden die Entwicklung von IRE1-Inhibitoren der nächsten Generation beschleunigen“, sagt Wu. Solche Verbindungen könnten auch als Werkzeuge in der Krebsforschung genutzt werden, um zu bestimmen, welcher Ansatz zur Krebsbekämpfung in der klinischen Praxis am besten geeignet ist und welche Krankheiten beim Menschen durch die gezielte Beeinflussung der Unfolded Protein Response am effektivsten behandelt werden können.

Originalpublikation:
Liu Y, Goebel L, Avathan Veettil AK, Gasper R, Jian M, Wagner L, Hastürk O, Wu P (2025). Harnessing Indole Scaffolds to Identify Small-molecule IRE1α Inhibitors Modulating XBP1 mRNA Splicing. Nat Commun.
Doi: 10.1038/s41467-025-64291-4
https://www.nature.com/articles/s41467-025-64291-4

Muskel-Leber-Gesundheit Labor AST + ALT

Forscher*innen verknüpfen körperliche Fitness mit Biomarkern – Aspartat tritt als Schlüsselmetabolit hervor

Kann ein einfacher Bluttest zeigen, wie gut jemand altert? Ein Forscherteam um Wolfram Weckwerth von der Universität Wien und der Nankai-Universität hat fortschrittliche Metabolomik mit modernster künstlicher Intelligenz und einem neuartigen Netzwerkmodellierungs-Tool kombiniert, um die zentralen molekularen Prozesse des aktiven Alterns zu entschlüsseln. Ihre Studie, veröffentlicht im Fachjournal npj Systems Biology and Applications (Nature Publishing Group), identifiziert Aspartat als dominanten Biomarker für körperliche Fitness und kartiert die dynamischen Interaktionen, die ein gesünderes Altern unterstützen.

Dass Bewegung Mobilität schützt und das Risiko chronischer Erkrankungen senkt, ist seit Langem bekannt. Doch die genauen molekularen Prozesse, die körperliche Aktivität in gesünderes Altern übersetzen, waren bislang kaum erforscht. Die Forscher*innen stellten sich daher eine scheinbar einfache Frage: Lassen sich die Vorteile eines aktiven Lebensstils bei älteren Menschen direkt im Blut erkennen – und welche Moleküle spielen dabei die größte Rolle?

Von Fitnesstests zu Blut-Fingerprints: Body Activity Index und Metabolomics Index

Die Forscher entwickelten zunächst einen "Body Activity Index" (BAI), indem sie mittels kanonischer Korrelationsanalyse die Ergebnisse aus Gehstrecke, Aufsteh-Tests, Handkraftmessungen und Gleichgewichtstests zusammenführten. 

Dieser zusammengesetzte Leistungswert erfasst Ausdauer, Kraft und Koordination in einem robusten Maß. Unabhängig davon wurde ein "Metabolomics Index" aus den Blutkonzentrationen von 35 niedermolekularen Metaboliten berechnet. In 263 Blutproben älterer Erwachsener zeigten beide Indizes eine Pearson-Korrelation von 0,85 (p < 1 × 10⁻¹⁹), was belegt, dass die molekulare Signatur im Blut die körperliche Fitness widerspiegelt.

KI identifiziert aktive und weniger aktive Gruppen sowie deren metabolische Signatur

Um komplexe, nichtlineare Muster zu erfassen, trainierten die Forscher fünf verschiedene KI-Modelle – von einfachen statistischen Verfahren (Generalisiertes Lineares Modell, GLM) bis hin zu fortgeschrittenen Methoden wie Entscheidungsbaum-Boosting (Gradient Boosting Machine, GBM; XGBoost) und einem Deep-Learning-Autoencoder-Netzwerk. Jedes Modell wurde mit wiederholter Kreuzvalidierung abgestimmt und an unabhängigen Datensätzen getestet. Die Boosting-Modelle (GBM und XGBoost) erzielten eine hohe Genauigkeit und unterschieden "aktive" von "weniger aktiven" Teilnehmern in über 91 % der Fälle (AUC > 0,91). Acht Metaboliten traten in allen fünf Algorithmen konsistent als Prädiktoren für Aktivitätsniveau hervor: Aspartat, Prolin, Fruktose, Apfelsäure, Pyruvat, Valin, Citrat und Ornithin. Aspartat stach dabei mit einem Faktor von zwei bis drei besonders hervor und bestätigte seine zentrale Rolle als molekularer Marker des aktiven Alterns.

Netzwerk-Umschaltung durch COVRECON

Korrelation allein erklärt nicht, warum bestimmte Moleküle mit Fitness verknüpft sind. Um die zugrunde liegenden Mechanismen zu verstehen, nutzte das Team das datengetriebene Modellierungs-Tool COVRECON. Einfach gesagt analysiert COVRECON, wie Metaboliten gemeinsam variieren, und rekonstruiert daraus das Netzwerk biochemischer Interaktionen. Mathematisch wurde eine differentielle Jacobimatrix geschätzt – ein Verfahren zur Identifikation enzymatischer Verbindungen, die sich zwischen aktiven und weniger aktiven Gruppen am stärksten verändern. 

Dabei wurden zwei bekannte Enzyme, Aspartat-Aminotransferase (AST) und Alanin-Aminotransferase (ALT), als zentrale Knotenpunkte im Netzwerk identifiziert. 

Beide sind Standardmarker in klinischen Lebertests, doch hier zeigten sie, wie Aktivität den Stoffwechsel umgestaltet. 

Die Vorhersagen wurden durch routinemäßige Bluttests bestätigt: 

Über den sechsmonatigen Studienzeitraum schwankten AST und ALT bei aktiven Teilnehmern deutlich stärker als bei ihren weniger aktiven Vergleichspersonen – ein Hinweis auf größere metabolische Flexibilität in Leber- und Muskelstoffwechsel.

Bedeutung für Gehirngesundheit und Demenz

Aspartat ist mehr als nur ein einfacher Stoffwechsel-Zwischenmetabolit: 

Im Gehirn dient es auch als Vorläufer von Neurotransmittern und aktiviert NMDA-Rezeptoren, die für Lernen und Gedächtnis essenziell sind. 

Diese doppelte Funktion bietet eine mögliche Verbindung zwischen körperlicher Fitness und kognitiver Gesundheit. 

Unabhängige Studien zeigen, dass niedrige AST- und ALT-Werte im mittleren Lebensalter – oder ein erhöhter AST/ALT-Quotient – mit einem erhöhten Risiko für Alzheimer und altersbedingten kognitiven Abbau verbunden sind. 

Indem die vorliegende Studie zeigt, dass körperliche Aktivität dynamische Veränderungen im Aspartat-Stoffwechsel und in der Plastizität dieser beiden Enzyme bewirkt, deutet sie auf eine molekulare Brücke zwischen Muskel-Leber-Gesundheit und neuronaler Widerstandsfähigkeit hin.

Die Ergebnisse vermitteln eine klare Botschaft: Körperliche Aktivität trägt nicht nur zur Erhaltung von Kraft und Mobilität bei, sondern könnte auch das Gehirn vor Demenz schützen – durch messbare Veränderungen in aminosäurebasierten Signalwegen. "Körperliche Aktivität bewirkt mehr als nur Muskelaufbau", erklärt Wolfram Weckwerth: "Sie verändert unseren Stoffwechsel auf molekularer Ebene. Indem wir diese Veränderungen entschlüsseln, können wir verfolgen – und sogar steuern – wie gut jemand altert."

Forschungsplattformen der Universität Wien, die dieses Projekt initiiert haben:
VIENNA METABOLOMICS CENTER:

 https://metabolomics.univie.ac.at/


Research Platform Active Ageing: 

https://activeageing.univie.ac.at/

MaAB - Medizin am Abend Berlin Fortbildungen VOR ORT


Prof. Dr. Wolfram Weckwerth
Vienna Metabolomics Center & Molecular Systems Biology Lab
Department für Funktionelle und Evolutionäre Ökologie
Universität Wien
1030 Wien, Djerassiplatz 1
T +43-1-4277-76510
wolfram.weckwerth@univie.ac.at

Originalpublikation:
Jiahang Li, Martin Brenner, Iro Pierides, Barbara Wessner, Bernhard Franzke, Eva-Maria Strasser, Steffen Waldherr, Karl-Heinz Wagner & Wolfram Weckwerth. Machine learning and data-driven inverse modeling of metabolomics unveil key processes of active aging. In npj Systems Biology and Applications.
DOI: 10.1038/s41540-025-00580-4
https://doi.org/10.1038/s41540-025-00580-4
https://www.nature.com/articles/s41540-025-00580-4