Qualitätszirkel Niren- und Dialysen

Kardiologie Potsdam

Universitätzmedizin Rostock

Alexianer St. Josephs Potsdam

Dialyse-Pflege-Standard

salt

PICS Ambulanz

Dr.Vetter

Woran erkranken wir in Deutschland?

BG Klinken - Post-COVID-Programm

Herz Check

EMA

Singende Krankenhäuser

Dr. Heart

Herzhose

Lauflabor

IKDT

Online Strafanzeigen

medpoint - Fortbildungskalendar

Was hab ich?

Healthtalk

BKV Info

BKG

KHS BB

KHS BB
.

Kardiologie

Urologie Berlin

bbgk

VEmaH

ProBeweis

aps-ev + Schlichtungsstelle

jkb

DHZB + Charité

zurück ins leben

CRO

Gewebenetzwerk

Anamnese- und Untersuchungsbogen

Diagnostische Pfade

FORTA

CIRS Bayern

Gender Medizin

lebensmittelwarnung.de

idw

Epithelialer Natriumkanal: Fluss der Gehirnflüssigkeit/Hirnwasser

Medizin am Abend Berlin Fazit: Bewegung des Hirnwassers regt Nerven-Stammzellen zur Teilung an

  • Stammzellen im Gehirn können sich teilen und bilden zeitlebens Nervenzellen, die an verschiedenen Hirnfunktionen, zum Beispiel dem Gedächtnis, beteiligt sind. 
Wissenschaftlerinnen und Wissenschaftler des Helmholtz Zentrums München und der Ludwig-Maximilians-Universität München (LMU) haben im Fachmagazin ‚Cell Stem Cell‘ gezeigt, dass auch ein Kanalprotein und die Scherkräfte der Gehirnflüssigkeit eine zentrale Rolle dabei spielen. 


Mikroskopische Aufnahme einer sogenannten Windradstruktur: Eine ENaC positive Stammzelle (rot), umgeben von Ependymzellen.
 Mikroskopische Aufnahme einer sogenannten Windradstruktur: Eine ENaC positive Stammzelle (rot), umgeben von Ependymzellen. Quelle: Helmholtz Zentrum München
 
Die altgriechische Formel „Panta rhei“ bedeutet so viel wie „alles fließt“. Damit beschrieben die Philosophen den steten Wandel und das Wechselspiel von Vergänglichkeit und Erneuerung. Eine aktuelle Arbeit verleiht diesem Zusammenhang ganz neue Bedeutung:

Die Forschenden um Prof. Dr. Magdalena Götz fanden nämlich heraus, dass der Fluss der Gehirnflüssigkeit zur Erneuerung von Stammzellen führen kann.

„Neuronale Stammzellen im Gehirn können sich teilen und zu Nervenzellen weiterentwickeln und diese Neubildung von Nervenzellen ist wichtig für die Gehirnfunktion“, erklärt Magdalena Götz, Direktorin des Instituts für Stammzellforschung am Helmholtz Zentrum München sowie Lehrstuhlinhaberin des Instituts für Physiologische Genomik am Biomedizinischen Centrum der LMU. 

„Diese Zellen sitzen in der sogenannten Stammzellnische und eine davon ist an den seitlichen Wänden der Seitenventrikel.* Dort werden sie von der zirkulierenden Zerebrospinalflüssigkeit – umgangssprachlich auch Hirnwasser - umspült.“

Bisher nahm man an, dass vor allem darin enthaltene Signalmoleküle die Nervenentwicklung steuern. Götz und ihr Team um Erstautor Dr. David Petrik fanden aber nun in enger Zusammenarbeit mit Kollegen an der LMU (Prof. Grothe) und der Heinrich-Heine-Universität in Düsseldorf heraus, dass auch die physikalischen Kräfte der Flüssigkeit die Stammzellen beeinflussen.

  • Kanalprotein spielt zentrale Rolle

„Gesteuert wird das ganze durch das Molekül ENaC“, erklärt Petrik. Die Abkürzung steht für epithelialer Natriumkanal und beschreibt ein Kanalprotein auf der Zelloberfläche, durch das Natriumionen ins Innere hineinströmen können.

  • „Im Versuchsmodell konnten wir zeigen, dass sich die Stammzellen nicht mehr teilen konnten, sobald ihnen ENaC fehlte. 
  • Umgekehrt fördert eine stärkere ENaC-Funktion die Teilung der Zellen, zum Beispiel wenn wir die Strömung der Flüssigkeit erhöhten.“

Weitere Tests ergaben, dass die Funktion von ENaC durch Scherkräfte gesteigert wurde, die durch das Hirnwasser auf die Zellen ausgeübt werden. Die mechanische Reizung führt zu einer verstärkten und längeren Öffnung des Kanalproteins und erlaubt so den Einstrom von Natriumionen in die Zelle, die dadurch in der Folge zur Teilung angeregt wird.

„Die Ergebnisse haben uns sehr überrascht, ENaC war bisher eigentlich nur für seine Funktionen in Nieren und Lunge bekannt“, so Studienleiterin Götz.

Mit ihrem Team möchte sie nun diese Art von Mechanismus näher untersuchen und zudem klären, inwiefern die Erkenntnisse auch therapeutisch relevant sind. 
Denn bereits jetzt werden pharmakologische ENaC-Blocker zur Linderung bestimmter Arten von Bluthochdruck klinisch eingesetzt. 
Sie könnten auch die Stammzellen im Gehirn und somit die Hirnfunktion beeinflussen.

Auch hier bleibt die Forschung im Fluss - Panta rhei…



Grafische Zusammenfassung der Ergebnisse.
Grafische Zusammenfassung der Ergebnisse. Quelle: Helmholtz Zentrum München

 
Weitere Informationen

* Die Hirnventrikel sind mit Hirnwasser gefüllte Hohlräume im Gehirn. Beide Großhirnhemisphären weisen je einen Seitenventrikel auf, um die es hier geht. Dazu kommen je ein Ventrikel im Zwischenhirn und im sogenannten Rhombencephalon.

Hintergrund:
Die Koautorin Melanie Pusch ist Teilnehmerim am Doktoranden-Ausbildungsprogramms Helmholtz Graduate School Environmental Health, kurz HELENA.

Original-Publikation:
Petrik, D. et al. (2018): Epithelial Sodium Channel Regulates Adult Neural Stem Cell Proliferation in a Flow-Dependent Manner. Cell Stem Cell, DOI: 10.1016/j.stem.2018.04.016

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.300 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 37.000 Beschäftigten angehören. http://www.helmholtz-muenchen.de

Das Institut für Stammzellforschung (ISF) untersucht die grundlegenden molekularen und zellulären Mechanismen der Stammzellerhaltung und -differenzierung. Daraus entwickelt das ISF Ansätze, um defekte Zelltypen zu ersetzen, entweder durch Aktivierung ruhender Stammzellen oder Neuprogrammierung anderer vorhandener Zelltypen zur Reparatur. Ziel dieser Ansätze ist die Neubildung von verletztem, krankhaft verändertem oder zugrunde gegangenem Gewebe. http://www.helmholtz-muenchen.de/isf

Die LMU ist eine der führenden Universitäten in Europa mit einer über 500-jährigen Tradition. Sie bietet ein breites Spektrum aller Wissensgebiete – die ideale Basis für hervorragende Forschung und ein anspruchsvolles Lehrangebot. Es reicht von den Geistes- und Kultur- über Rechts-, Wirtschafts- und Sozialwissenschaften bis hin zur Medizin und den Naturwissenschaften. 15 Prozent der 50.000 Studierenden kommen aus dem Ausland – aus insgesamt 130 Nationen. Das Know-how und die Kreativität der Wissenschaftlerinnen und Wissenschaftler bilden die Grundlage für die herausragende Forschungsbilanz der Universität. Der Erfolg der LMU in der Exzellenzinitiative, einem deutschlandweiten Wettbewerb zur Stärkung der universitären Spitzenforschung, dokumentiert eindrucksvoll die Forschungsstärke der Münchener Universität. http://www.lmu.de

Medizin am Abend Berlin DirektKontakt
www.medizin-am-abend.blogspot.com











Über Google: Medizin am Abend Berlin  
idw - Informationsdienst Wissenschaft e. V.


Prof. Dr. Magdalena Götz, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institut für Stammzellforschung, Ingolstädter Landstr. 1, 85764 Neuherberg, Tel. +49 89 3187 3750, E-Mail: magdalena.goetz@helmholtz-muenchen.de

Ingolstädter Landstr.1
85764 Neuherberg
Deutschland
Bayern


Sonja Opitz
Telefon: 08931872986
Fax: 08931873324
E-Mail-Adresse: sonja.opitz@helmholtz-muenchen.de
 

Onkologische REHA: Peripheren Nervensystem: Muskeln und die Sinnesstrukturen der Haut

Medizin am Abend Berlin Fazit: Wenn die Kraft im Alter fehlt

Altersbedingte Veränderungen in den peripheren Nerven können die Lebensqualität drastisch einschränken. Würzburger Wissenschaftler haben jetzt einen Auslöser dieser Veränderungen identifiziert. 
 
Die durchschnittliche Lebenserwartung der Menschen ist so hoch wie nie zuvor und nimmt weiter zu.

Damit einhergeht ein Zuwachs an altersbedingten Krankheiten, die das Nervensystem betreffen, wie beispielsweise Morbus Alzheimer und andere Formen der Demenz.

Solche krankhaften Veränderungen finden sich allerdings nicht nur im Gehirn. 
  • Auch im peripheren Nervensystem, das beispielsweise Muskeln und die Sinnesstrukturen der Haut versorgt, steigt das Risiko für Degenerationserscheinungen mit zunehmendem Alter.

Zunehmende Muskelschwäche

Die Folgen für die Betroffenen sind ernst:

  • Sie leiden oft unter Missempfindungen und quälenden Schmerzen in den Extremitäten. 
  • Die zunehmende Muskelschwäche ist besonders bedeutungsvoll, schränkt sie doch die Betroffenen in ihrer Mobilität deutlich ein und führt nicht selten zu gefährlichen Stürzen, die dann häufig den Verlust der Selbstständigkeit nach sich ziehen.

Obwohl die Konsequenzen der altersbedingten Degeneration peripherer Nerven von großer Bedeutung für die Lebensqualität im Alter und für die Volkswirtschaft sind, wurden deren Ursachen bislang nicht systematisch untersucht. Das hat sich jetzt geändert: In einem neuen Projekt haben Wissenschaftler der Neurologischen Klinik des Würzburger Universitätsklinikums einen wichtigen und möglicherweise therapierbaren Teilaspekt der altersbedingten Nervendegeneration genauer untersucht. Verantwortlich dafür war Professor Rudolf Martini, Leiter der Sektion Experimentelle Entwicklungsneurobiologie an der Neurologischen Klinik. In der Fachzeitschrift Journal for Neuroscience haben die Forscher die Ergebnisse ihrer Studie veröffentlicht.

Makrophagen im Visier

„In Zusammenarbeit mit Kollegen der Universität Aachen haben wir zuerst systematisch die Veränderungen erfasst, die sich in peripheren Nerven von Menschen im Alter zwischen 65 und 79 Jahren finden“, beschreibt Rudolf Martini die Vorgehensweise seines Teams.

  • In ihren Proben stießen die Forscher dabei auf eine erhöhte Anzahl von Makrophagen. 

Makrophagen sind Zellen, die zum Abwehr- und Entsorgungssystem des Körpers gehören.

  • Sie nehmen beispielsweise Krankheitserreger, Fremdpartikel sowie alternde Körperzellen auf und verdauen und entsorgen diese. 
  • Sie setzten Entzündungsprozesse in Gang, helfen dabei, Wunden zu heilen, und reinigen das Gewebe. 
  • Unglücklicherweise richten sie aber auch bei einigen Erkrankungen Schaden an.

Ob dies bei den altersbedingten degenerativen Veränderungen in den Nerven ebenfalls der Fall war, haben die Wissenschaftler im Experiment mit Mäusen studiert. „Wir haben dafür die Nerven von 24 Monate alten Mäusen genau untersucht, was für Mäuse schon ein ziemlich hohes Alter ist“, erklärt Rudolf Martini. Dabei zeigte sich, dass die altersbedingten Veränderungen in den peripheren Nerven der Mäuse denen in den Nerven der Menschen stark ähnelten. Wie beim Menschen war auch bei den Mäusen die Anzahl der Makrophagen erhöht. Ebenso hatten die älteren Tiere weniger Kraft als jüngere Exemplare, und ihre motorischen Endplatten – die Synapsen zwischen Nerven und Muskelfasern – waren ebenfalls weniger intakt.

Erfolgreiche Therapie im Tierversuch

In einem weiteren Schritt untersuchten Martini und sein Team, ob tatsächlich Makrophagen als Auslöser dieser Veränderungen in Frage kommen.

Dafür haben sie Mäusen im fortgeschrittenen Alter von 18 Monaten eine spezielle Substanz im Futter verabreicht, die ein Absterben der Makrophagen bewirkte.

 „Nach sechsmonatiger Behandlung konnten wir feststellen, dass die degenerativen Altersveränderungen in den behandelten Mäusen wesentlich schwächer ausgeprägt waren“, schildert Martini das Ergebnis.

Dementsprechend verfügten die Tiere über stärkere Muskeln und ihre motorischen Endplatten waren besser erhalten, verglichen mit unbehandelten Exemplaren.

Für Martini und seine Kollegen steht damit fest: 
  • „Unsere Studie zeigt nicht nur einen kausalen Zusammenhang von entzündlichen Reaktionen in alternden Nerven mit degenerativen Alterungsprozessen, sondern auch eine potenzielle Therapierbarkeit.“
  • Ihrer Ansicht nach kann eine gezielte und möglichst spezifische Behandlung altersbedingter, Makrophagen-vermittelter Entzündungsreaktionen zu einer Verbesserung von Struktur und Funktion der Nerven führen – und damit einhergehend - zu einer verbesserten Mobilität und höheren Lebensqualität.

Für Infektionen und Diabetes von Bedeutung

Die Interpretation der jetzt gewonnenen Erkenntnisse lässt allerdings noch weitergehende Schlüsse zu: Weil bei Infektionen oder im Alter häufig auftretenden chronischen Krankheiten wie Diabetes mellitus im Körper ebenfalls Entzündungsreaktionen ablaufen, bilden diese ein zusätzliches Risiko für alternde Nerven. Die Forscher hoffen deshalb, dass ihre Erkenntnisse dazu beitragen, die Erforschung und Entwicklung von Wirkstoffen anzustoßen, die speziell an Makrophagen ansetzen.

Martini und sein Team wollen in weiteren Experimenten untersuchen, wie es zur altersbedingten Entzündungsreaktion im Nerven kommt.

Sie wollen herausfinden, welche Zellen im Nerven für die erhöhte Anzahl der Makrophagen verantwortlich ist, und ob es neben einer medikamentösen Therapie möglicherweise andere Ansätze zur Behandlung der degenerativen Veränderungen gibt – beispielsweise spezielle physiotherapeutische Trainingsprogramme, wie man sie von anderen entzündlichen Erkrankungen kennt. 

Neben diesen wichtigen Erkenntnissen zur Entstehung von Nervendegeneration im Alter zeigt diese Studie erneut die Unverzichtbarkeit von präzise geplanten Tierversuchen für die Entwicklung von Therapien bei bislang unbehandelbaren Erkrankungen des Menschen.

Macrophage depletion ameliorates peripheral neuropathy in aging mice. Xidi Yuan, Dennis Klein, Susanne Kerscher, Brian L. West, Joachim Weis, Istvan Katona and Rudolf Martini. Journal of Neuroscience 30 April 2018, 3030-17; DOI: https://doi.org/10.1523/JNEUROSCI.3030-17.2018

Medizin am Abend Berlin DirektKontakt
www.medizin-am-abend.blogspot.com










Über Google: Medizin am Abend Berlin
idw - Informationsdienst Wissenschaft e. V.

Prof. Dr. Rudolf Martini, Universitätsklinikum Würzburg, Neurologische Klinik, Sektion Experimentelle Entwicklungsneurobiologie, E-Mail: rudolf.martini@mail.uni-wuerzburg.de

Gunnar Bartsch Julius-Maximilians-Universität Würzburg

Sanderring 2
97070 Würzburg
Deutschland
Bayern 

Gunnar Bartsch
Redakteur
Telefon: (0931) 31-82172
Fax: 0931/31-2610
E-Mail-Adresse: bartsch@zv.uni-wuerzburg.de