Qualitätszirkel Niren- und Dialysen

Kardiologie Potsdam

Universitätzmedizin Rostock

Alexianer St. Josephs Potsdam

Dialyse-Pflege-Standard

salt

PICS Ambulanz

Dr.Vetter

Woran erkranken wir in Deutschland?

BG Klinken - Post-COVID-Programm

Herz Check

EMA

Singende Krankenhäuser

Dr. Heart

Herzhose

Lauflabor

IKDT

Online Strafanzeigen

medpoint - Fortbildungskalendar

Was hab ich?

Healthtalk

BKV Info

BKG

KHS BB

KHS BB
.

Kardiologie

Urologie Berlin

bbgk

VEmaH

ProBeweis

aps-ev + Schlichtungsstelle

jkb

DHZB + Charité

zurück ins leben

CRO

Gewebenetzwerk

Anamnese- und Untersuchungsbogen

Diagnostische Pfade

FORTA

CIRS Bayern

Gender Medizin

lebensmittelwarnung.de

idw

Der menschliche Körper enthält bis zu 100 Billionen Zellen

Medizin am Abend Berlin Fazit:  Zellen verschicken Stoppschilder

Eph-Rezeptoren und ihre Bindungspartner, die Ephrine, sind für die Zellkommunikation essentiell. 

Sie leiten junge Nervenzellen zu den richtigen Partnerzellen und spielen bei der Zellwanderung, Regeneration, neurodegenerativen Erkrankungen und der Krebsentwicklung eine wichtige Rolle. 

Bislang gingen Wissenschaftler davon aus, dass die Signalübertragung nur durch direkten Zell-zu-Zell-Kontakt möglich ist. Wissenschaftler am Max-Planck-Institut für Neurobiologie zeigen nun, dass Zellen Ephrine und Eph-Rezeptoren auch verpacken und verschicken können. Neben einem besseren Verständnis dieses Kommunikationssystems eröffnet die Entdeckung eventuell auch neue therapeutische Ansätze. 
 
Der menschliche Körper enthält bis zu 100 Billionen Zellen. Diese Zellen wachsen, wandern, vermehren und bewegen sich. Dabei treten die Zellen mit unzähligen anderen Zellen in Kontakt und tauschen Informationen aus. 

Diese Kommunikation erfolgt zum Beispiel über das Ephrin/Eph-Rezeptorsystem, das auf diese Weise die Zellwanderung und das Auswachsen von Nervenzellen steuern kann.

  • Doch auch bei plastischen Prozessen wie Lernen und Regeneration, oder beim Krebswachstum und neurodegenerativen Erkrankungen spielt das Ephrin/Eph-System eine Rolle.

Eph-Rezeptoren und ihre Bindungspartner, die Ephrine, sitzen auf der Oberfläche fast aller Zellen. Treffen Ephrin und Eph-Rezeptor zweier Zellen aufeinander, bilden sie einen Ephrin/Eph-Komplex. Dadurch werden zelluläre Prozesse in einer oder beiden Zellen ausgelöst, die in den meisten Fällen zur Trennung des Komplexes und zur Abstoßung einer der beiden Zellen führt. Die abgestoßene Zelle bewegt sich oder wächst dann in eine andere Richtung. Im Nervensystem lenken viele solcher Interaktionen die Fortsätze junger Nervenzellen zu den richtigen Zielorten. 

 Membranständige Signalmoleküle können Nervenzellfortsätze auch über die Distanz hinweg zum Rückzug bewegen.
Membranständige Signalmoleküle können Nervenzellfortsätze auch über die Distanz hinweg zum Rückzug bewegen. MPI für Neurobiologie / Gong

„Es ist daher von grundlegender Bedeutung zu verstehen, wie Zellen über dieses System kommunizieren“, sagt Rüdiger Klein, der mit seiner Abteilung am Max-Planck-Institut für Neurobiologie Ephrine und Eph-Rezeptoren untersucht. Bisher schien sicher, dass Ephrin und Eph nur bei direktem Kontakt zweier Zellen einen Signalprozess auslösen können. In letzter Zeit waren Ephrine und Eph-Rezeptoren jedoch auch in sogenannten Exosomen gefunden worden. Exosome sind kleine Fetttröpfchen, die von Zellen an ihre Umgebung abgegeben werden und zum Beispiel als Transportvehikel, Signalüberträger oder zur Ausscheidung von Zellbestandteilen dienen.  

"Dies hat die interessante Frage aufgeworfen, was Ephs und Ephrine in den Exosomen zu suchen haben", so Klein.

In einer aufwändigen Laborstudie haben die Martinsrieder Neurobiologen daher Exosome verschiedener Zelltypen, darunter auch Nervenzellen, aufgereinigt und den Inhalt analysiert. 

Sie konnten zeigen, dass Ephrine und Ephs in vielen dieser Exosome enthaltenen waren, und entschlüsselten den zellulären Mechanismus über den sie in die Exosome verpackt werden. 

  • Interessanterweise zeigte eine weitere Analyse, dass Eph-Rezeptoren nicht als Abfallprodukt in den Exosomen entsorgt wurden, sondern dort aktiv blieben: 
  • Auch Eph-Rezeptoren aus Exosomen konnten an Ephrin-Moleküle auf der Oberfläche auswachsender Nervenzellen binden und so das Zurückziehen der Zellfortsätze auslösen. 

Dies belegt erstmals, dass Zellen auch über Distanzen hinweg Ephrine und Ephs als Signalgeber versenden können. 

"Das eröffnet eine ganze Reihe neuer Möglichkeiten", freut sich Rüdiger Klein. Unter anderem wurden Ephrine und Eph-Rezeptoren auch in den Exosomen von Krebszellen gefunden. 

"Es wäre daher denkbar, dass Strategien, die die Exosom-Ausschüttung steuern, auch die Ephrin-Eph-Signalkette unterbrechen und somit das Tumorwachstum stören könnten", so Klein.

ORIGINALVERÖFFENTLICHUNG
Jingyi Gong, Roman Körner, Louise Gaitanos, Rüdiger Klein
Exosomes mediate cell contact-independent ephrin-Eph signaling during axon guidance
Journal of Cell Biology, 04. Juli 2016

Medizin am Abend Berlin DirektKontakt
www.medizin-am-abend.blogspot.com
 








Über Google: Medizin am Abend Berlin

Dr. Stefanie Merker
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 - 8578 3514
E-Mail: merker@neuro.mpg.de
www.neuro.mpg.de

Prof. Dr. Rüdiger Klein
Abteilung "Moleküle – Signale – Entwicklung"
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 - 8578 3150
Email: rklein@neuro.mpg.de

 institution logo

Weitere Informationen für international Medizin am Abend Berlin Beteiligte
http://www.neuro.mpg.de/klein/de - Die Abteilung von Prof. Rüdiger Klein

Blutvergiftung, Hämolyse oder gehäuften Bluttransfusionen: tMACS- transitorische Makrophagen Labormessung

Medizin am Abend Berlin Fazit:  Blut-Abbau im Akkord: Zell-Einwanderer schützen vor Eisenvergiftung

Freiburger Forscher entschlüsseln, wie der Körper rote Blutkörperchen abbaut, ohne sich dabei selbst zu vergiften / Ansatz könnte Komplikationen nach Blutvergiftung und Hämolyse vermindern / Publikation am 18. Juli 2016 in Nature Medicine 
 
  • Bei Blutvergiftung, Hämolyse oder gehäuften Bluttransfusionen müssen viele rote Blutkörperchen auf einmal abgebaut werden. 
  • Wird das darin enthaltene Eisen frei, kann es schwere Organschäden verursachen. 
Wie der Körper in solchen Notsituationen das Blut abbaut, haben jetzt Wissenschaftler des Universitäts-Herzzentrums Freiburg · Bad Krozingen und des Universitätsklinikums Freiburg gemeinsam mit Forschern aus den USA und Österreich herausgefunden. Sie zeigten bei Mäusen, dass in solchen Fällen nicht die Milz, wie bislang gedacht, sondern die Leber der Hauptabbau-Ort für rote Blutkörperchen ist.

  • Einen Großteil der Arbeit übernehmen Immunzellen, die extra in die Leber einwandern und sich dort zu hochspezialisierten Eisenverwertern entwickeln. Auch beim Menschen existiert ein vergleichbarer Mechanismus, wie die Forscher nachwiesen. 

Die Erkenntnisse, die am 18. Juli 2016 im Fachmagazin Nature Medicine erschienen, ermöglichen einen neuen Ansatz, um Komplikationen nach Bluttransfusionen oder Blutvergiftung besser zu behandeln.

„Wir haben erstmals Kompensationsmechanismen beschrieben, die den Körper bei einem verstärkten Abbau von roten Blutkörperchen vor Eisenvergiftung schützen“, sagt Dr. Ingo Hilgendorf, einer der Erstautoren der Studie und Forschungsgruppenleiter in der Klinik für Kardiologie und Angiologie I am Universitäts-Herzzentrum Freiburg ∙ Bad Krozingen (Ärztlicher Direktor: Univ.-Prof. Dr. Dr. h.c. Christoph Bode).

tMacs können mehr Eisen aufnehmen als jeder andere Zelltyp

Die Forscher wiesen nach, dass Monozyten-Immunzellen in die Leber einwandern und sich nur hier aufgrund der für die Leber einzigartigen Zusammensetzung an Wachstumsfaktoren zu sogenannten transitorischen Makrophagen (tMacs) entwickeln.

  • Diese tMacs können mehr Eisen aufnehmen als jeder andere Zelltyp. Bei Bedarf stellen sie das Eisen auch wieder für den Aufbau roter Blutkörperchen zu Verfügung. Sie unterstützen damit die Eisen-verwertenden Kupfferzellen, die bereits mit der Geburt in der Leber angelegt sind.

Blockierten die Forscher die Wanderung von Monozyten in die Leber, waren die Zellen in Milz und Leber mit dem Eisenrecycling überfordert.

Die Folge: Eisen wurde freigesetzt und es entstanden Leber- und Nierenschäden (Abbildung). Derartige Komplikationen sind auch von Patienten mit gestörtem Blutabbau bekannt.


Können Monozyten nicht in die Leber einwandern und sich zu Eisen-verwertenden Zellen entwickeln, lagert sich giftiges Eisen in Organen wie der Niere ab. (Eisen frei: blau,Eisen-Protein-Komplex:braun)
Können Monozyten nicht in die Leber einwandern und sich zu Eisen-verwertenden Zellen entwickeln, lagert sich giftiges Eisen in Organen wie der Niere ab. (Eisen frei: blau,Eisen-Protein-Komplex:braun)
CSB Massachusetts General Hospital

Bei Patienten wiesen die Forscher ebenfalls die eingewanderten Zellen nach

Die Forscher untersuchten auch Patienten, die aufgrund einer koronaren Bypass-Operation an eine Herz-Lungen-Maschine angeschlossen waren. Der Einsatz der Maschine führt zu einem deutlich höheren Verschleiß roter Blutkörperchen und damit zu erhöhten Abbauraten. 

Bei diesen Patienten konnten sie ebenfalls die eingewanderten Immun-Zellen nachweisen. „Auf Grundlage unserer Arbeiten werden wir nun untersuchen müssen, ob die Immunzellen gezielt aktiviert werden können, um Komplikationen bei erhöhtem Erythrozytenzerfall zu vermeiden“, sagt Dr. Hilgendorf.

Durch Verwendung eines bereits etablierten Mausmodells zur genetischen Markierung dieser Immunzellen, das vom Co-Autor Prof. Dr. Marco Prinz, Ärztlicher Direktor des Instituts für Neuropathologie des Universitätsklinikums Freiburg, entwickelt worden war, waren die Forscher in der Lage, die eingewanderten und die ortstreuen Eisen-speichernden Zellen der Leber zu unterscheiden. „Auf den ersten Blick sehen beide Zelltypen identisch aus. Mit einem genetischen Marker konnten wir jetzt die genetische Abstammung und Entwicklung der unterschiedlichen Zellen sehr präzise verfolgen“, sagt Prof. Prinz.

Die aufwendigen Versuche entstanden über einen Zeitraum von über vier Jahren in Zusammenarbeit mit Kollegen aus Boston, USA, Innsbruck, Österreich, sowie mit Kooperationspartnern der Albert-Ludwigs-Universität Freiburg.

„Diese Arbeiten sind ein Paradebeispiel interdisziplinärer Forschung, die vom Reagenzglas über das Mausmodell letztlich unseren Patienten zugutekommt“, sagt Prof. Bode. „Es ist die Aufgabe der Universitäten, besonders begabte Ärzte für die Grundlagenforschung zu begeistern, da nur die Doppelausbildung zu Durchbrüchen im Verständnis von Krankheiten befähigt. Dieser Aufgabe kommt die Universität Freiburg in exemplarischer Weise nach.“

Titel der Originalstudie: On-demand erythrocyte disposal and iron recycling requires monocyte-derived transient macrophages in the liver

Doi: 10.1038/nm.4146

Medizin am Abend Berlin DirektKontakt
www.medizin-am-abend.blogspot.com




 









Über Google: Medizin am Abend Berlin 

Dr. Ingo Hilgendorf
Klinik für Kardiologie und Angiologie I
Universitäts-Herzzentrum Freiburg ∙ Bad Krozingen
Telefon: 0761 270-34010/ -70380
ingo.hilgendorf@universitaets-herzzentrum.de

Johannes Faber
Universitätsklinikum Freiburg
Telefon: 0761 270-84610
johannes.faber@uniklinik-freiburg.de
Benjamin Waschow Universitäts-Herzzentrum Freiburg - Bad Krozingen

Weitere Informationen für international Medizin am Abend Berlin
http://www.nature.com/nm/journal/vaop/ncurrent/full/nm.4146.html Link zur Studie

http://www.herzzentrum.de/kliniken-fachbereiche/klinik-fuer-kardiologie-und-angi... Forschungsgruppe Dr. Hilgendorf